Emails are one of the fastest economic communications. Increasing email users has caused the increase of spam in recent years. As we know, spam not only damages user’s profits, time-consuming and bandwidth, but also has become as a risk to efficiency, reliability, and security of a network. Spam developers are always trying to find ways to escape the existing filters, therefore new filters to detect spams need to be developed. Most of these filters take advantage of a combination of several methods, such as black or white lists, using keywords, rule-based filters, machine learning methods and so on, to identify spams more accurately. many approaches about email spam detection exhausted up to now. In this paper, we propose a new approach for spam detection based on Particle Swarm Optimization Algorithm and K-Nearest Neighbor optimization, and we measure performance based on Accuracy, Precision, Recall, And f-measure. The results show that the proposed approach has a better performance than other models and the basic algorithms. |